3.8.86 \(\int \frac {1}{x \sqrt {a+b x^2+(2+2 c-2 (1+c)) x^4}} \, dx\)

Optimal. Leaf size=25 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {5, 266, 63, 208} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x^2 + (2 + 2*c - 2*(1 + c))*x^4]),x]

[Out]

-(ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]/Sqrt[a])

Rule 5

Int[(u_.)*((a_.) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(a + b*x^n)^p, x] /; FreeQ[{
a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[c, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x^2+(2+2 c-2 (1+c)) x^4}} \, dx &=\int \frac {1}{x \sqrt {a+b x^2}} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^2}\right )}{b}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 25, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x^2 + (2 + 2*c - 2*(1 + c))*x^4]),x]

[Out]

-(ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]/Sqrt[a])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.03, size = 25, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x*Sqrt[a + b*x^2 + (2 + 2*c - 2*(1 + c))*x^4]),x]

[Out]

-(ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]/Sqrt[a])

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 60, normalized size = 2.40 \begin {gather*} \left [\frac {\log \left (-\frac {b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right )}{2 \, \sqrt {a}}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right )}{a}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2)/sqrt(a), sqrt(-a)*arctan(sqrt(-a)/sqrt(b*x^2 + a))/a]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 22, normalized size = 0.88 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {b x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(b*x^2 + a)/sqrt(-a))/sqrt(-a)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 29, normalized size = 1.16 \begin {gather*} -\frac {\ln \left (\frac {2 a +2 \sqrt {b \,x^{2}+a}\, \sqrt {a}}{x}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^2+a)^(1/2),x)

[Out]

-1/a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^2+a)^(1/2))/x)

________________________________________________________________________________________

maxima [A]  time = 1.08, size = 17, normalized size = 0.68 \begin {gather*} -\frac {\operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | x \right |}}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

-arcsinh(a/(sqrt(a*b)*abs(x)))/sqrt(a)

________________________________________________________________________________________

mupad [B]  time = 4.57, size = 19, normalized size = 0.76 \begin {gather*} -\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,x^2+a}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^2)^(1/2)),x)

[Out]

-atanh((a + b*x^2)^(1/2)/a^(1/2))/a^(1/2)

________________________________________________________________________________________

sympy [A]  time = 1.20, size = 19, normalized size = 0.76 \begin {gather*} - \frac {\operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x} \right )}}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**2+a)**(1/2),x)

[Out]

-asinh(sqrt(a)/(sqrt(b)*x))/sqrt(a)

________________________________________________________________________________________